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Abstract

In this paper we describe an efficient, local-bound-preserving conservative interpolation (remapping) algorithm,

which is exact for a global linear function (linearity-preserving). The algorithm is based on reconstruction,

approximate integration and mass re-distribution. We demonstrate our new algorithm on a series of numerical

examples.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction – statement of the problem

Consider that we have a mesh that is a tessellation of some region X by a collection of cells

Ci; i ¼ 1; . . . ; L, that is, the cells have disjoint connected interiors and their union is X. This we will call the
old mesh.

Next, suppose there is a new tessellation of the region with a different collection of cells ~CCi; i ¼ 1; . . . ; L,
such that each new cell ~CCi is obtained by a small displacement of the vertices of the old cell Ci by some

displacement vector field d. We emphasize here that the old and new meshes have the same number of cells
and the same connectivity.

For example, in the context of an arbitrary Lagrangian–Eulerian method the old mesh would be the

result of the Lagrangian step and the new mesh would be the result of mesh modification (rezoning) (see,

for example, [5]).

The situation is that the only data that the computation has at hand are, for each cell Ci, the mass for

some density function qðxÞ, said mass being
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mi ¼
Z
Ci

qðxÞdV

with corresponding mean value

�qqi ¼
mi

jCij
;

where jCij > 0 is the volume (area in 2D) of Ci.

The conservative interpolation (remapping) problem is to compute the masses ~mmi and mean values of the

new grid, but since the density distribution is unknown we can only approximate them. We will denote

these approximate values by ~mm�
i .

This approximation will have to satisfy at least the following two constraints:

(I) Total mass should be conserved.

(II) Exactness for a global linear function. If qðxÞ happens to be a linear function on X then the new masses
~mm�
i should exactly agree with the masses of that function for the new cells.

A possible procedure for accomplishing this has two stages. First, one constructs a new distribution on the

old mesh q̂qðxÞ such thatZ
Ci

q̂qðxÞdV ¼ mi

and if qðxÞ is a global linear function then q̂qðxÞ � qðxÞ. Usually q̂qðxÞ is a discontinuous piece-wise linear
(linear on each cell Ci) function, whose local gradients have been limited in some way to satisfy additional

conditions such as weak monotonicity.

For the second stage the reconstructed function q̂qðxÞ is exactly integrated over the new cells. This re-
quires finding the intersection of each new cell with the old ones. Finding the intersections is easy in one

dimension, doable but computationally very expensive in two dimensions, and not practical in three di-

mensions. We will call any such two stage method ‘‘exact’’.

The goal of this paper is to present a new efficient, conservative, local-bound-preserving algorithm for

remapping which does not require finding intersections between the cells of the old and new mesh, and is

exact for a global linear function.

In the first stage of our new remapping method we also use a discontinuous piecewise linear q̂qðxÞ, but
without gradient limiters.
In the second stage, the new mass is written in flux form, that is, the mass of each new cell will be set to

the mass of the corresponding old cell plus terms which define exchange of mass with nearest neighbors

(fluxes). Using the flux form trivially guarantees conservation of total mass. In contrast to Dukowicz and

Baumgardner [3], who use exact integration to compute these fluxes, we use a quadrature, which does not

require finding the intersections of new and old cells.

It may happen that the mean densities in the new cells will be out of local bounds, for example, they can

be negative even if the original means were all positive. The cause of this can be: either use of unlimited

gradients in the reconstruction, approximate integration, or both.
To fix out of bound mean densities we introduce a third stage – repair. In this stage masses of new cells

are re-distributed in such a way that the modified new means are in the range of local bounds, and they are

changed as little as possible compared with those obtained as a result of the second stage.

In the next two sections we will describe the algorithm in some detail and will give some numerical

examples. In those examples for the purpose of comparison we also present some results using a particular

exact method, that is, the method of limited reconstruction of Barth and Jespersen [1].

A summary of the numerical results and some discussion about the extension of the algorithm to 3D are

given in Section 4.

M. Kucharik et al. / Journal of Computational Physics 188 (2003) 462–471 463



2. The remapping algorithm

The method we are describing is by no means restricted to a logically rectangular (structured quadri-

lateral) grid or to 2D, but we explain it in those terms.

The grid points or vertices of a logically rectangular grid have the vertices Pi;j ¼ ðxi;j; yi;jÞ, i ¼ 1; . . . ;m,
j ¼ 1; . . . ; n. The cells Ciþ1

2
;jþ1

2
are the quadrilaterals formed by the four vertices Pi;j, Piþ1;j, Piþ1;jþ1, Pi;jþ1 (see

Fig. 1).

2.1. Reconstruction – first stage

The first task is to construct the function q̂qðx; yÞ. We define a piecewise linear function q̂qðx; yÞ on the old
grid (with gradient ðgx; gyÞ, to be defined) as

q̂qðx; yÞ ¼ q̂qiþ1
2
;jþ1

2
¼ �qqiþ1

2
;jþ1

2
þ gxiþ1

2
;jþ1

2
x

�
� �xxiþ1

2
;jþ1

2

�
þ gy

iþ1
2
;jþ1

2

y
�

� �yyiþ1
2
;jþ1

2

�
; ðx; yÞ 2 Ciþ1

2
;jþ1

2
;

where the centroid ð�xxiþ1
2
;jþ1

2
; �yyiþ1

2
;jþ1

2
Þ is

�xxiþ1
2
;jþ1

2
¼ 1

Ciþ1
2
;jþ1

2

��� ���
Z
C
iþ1
2
;jþ1
2

xdV ;

�yyiþ1
2
;jþ1

2
¼ 1

Ciþ1
2
;jþ1

2

��� ���
Z
C
iþ1
2
;jþ1
2

y dV ;

and these can be computed exactly for polygons, as can the integral of any linear function (see, for example

[4]). The gradient ðgx
iþ1
2
;jþ1

2

; gy
iþ1
2
;jþ1

2

Þ can be obtained from any difference approximation to the gradient of

qðx; yÞ using neighboring old mean values as long as it is exact if the old means are the mean values of a
global linear function (for examples of such approximation see [4]).

Clearly such reconstruction will be exact for global linear functions.

Fig. 1. Old (thin lines and solid circles) and new mesh (bold lines and solid squares); swept regions.
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2.2. Flux form and swept region quadrature – stage two

2.2.1. Flux form

We now look for a finite difference equation defining the new masses ~mm�
iþ1
2
;jþ1

2

in terms of the old masses

miþ1
2
;jþ1

2
, and mass exchange with neighboring cells,

~mm�
iþ1
2
;jþ1

2
¼ miþ1

2
;jþ1

2
þFiþ1;jþ1

2
�Fi;jþ1

2
þFiþ1

2
;jþ1 �Fiþ1

2
;j: ð1Þ

HereF are edge fluxes, which are defined following ideas from [4] and will be described in next subsection.

2.2.2. Swept regions

Consider an oriented edge Fi;jþ1
2
¼ fPi;jþ1; Pi;jg. This edge is common to cells Ciþ1

2
;jþ1

2
and Ci�1

2
;jþ1

2
. The

displacement vector field d moves Pi;j to its new position ~PPi;j and Pi;jþ1 to ~PPi;jþ1, thereby forming the oriented
quadrilateral dFi;jþ1

2
¼ ðPi;j; ~PPi;j; ~PPi;jþ1; Pi;jþ1Þ (see Fig. 1). It is important to note that this quadrilateral can

have self-intersections. This quadrilateral was called a fluxing area in [3], swept region in [4], but the notion

seems to have been introduced earlier by Collela [2]. Similarly, for an oriented edge Fiþ1
2
;j ¼ fPi;j; Piþ1;jg we

define the swept region as dFiþ1
2
;j ¼ ðPi;j; Piþ1;j; ~PPiþ1;j; ~PPi;jÞ.

We next summarize the development in [4]. First of all, the critical function of the swept region is its

signed area jdFi;jþ1
2
j, which in turn depends on the ordering of its vertices (orientation of the boundary). It is

introduced by expressing the area in terms of a line integral as follows:

dFi;jþ1
2

��� ��� ¼ Z
dF

i;jþ1
2

dV ¼
I
@ dF

i;jþ1
2

� � xdy: ð2Þ

Because of the chosen orientation, for situation shown in Fig. 1, jdFi;jþ1
2
j < 0.

As has been shown in [4], we can introduce signed integration of any polynomial function over a polygon

by reducing it to a line integral similar to (2). The sign, of course, will depend on the chosen orientation. In

the rest of the paper each time we integrate a linear function over a polygon we always will assume that it is

a signed integration.

We define fluxes Fi;jþ1
2
in (1) as follows

Fi;jþ1
2
¼

Z
dF

i;jþ1
2

q̂qi;jþ1
2
ðx; yÞdV ;

where

q̂qi;jþ1
2
ðx; yÞ ¼

q̂qiþ1
2
;jþ1

2
ðx; yÞ; jdFi;jþ1

2
jP 0;

q̂qi�1
2
;jþ1

2
ðx; yÞ; jdFi;jþ1

2
j < 0;

(
:

In words, in the swept region the integrand is taken entirely from the cell on one side or the other of the

edge, depending on the sign of the swept area. In the case shown in Fig. 1, jdFi;jþ1
2
j < 0 and we use the

reconstructed linear function belonging to the left side of the edge ðq̂qi�1
2
;jþ1

2
ðx; yÞÞ because most of the swept

region lies inside cell Ci�1
2
;jþ1

2
.

Similar formulas are used for the other family of edges.

Formula (1) can be considered as a conservative quadrature for computing the new mass ~mmiþ1
2
;jþ1

2
. In fact,

in the situation shown in Fig. 1 the new cell ~CCiþ1
2
;jþ1

2
is the union of the old cell Ciþ1

2
;jþ1

2
and the four swept

regions corresponding to its edges. Formula (1) means that the new mass is approximated by the integral

over the old cell (which gives miþ1
2
;jþ1

2
) plus integrals over the swept regions, where the choice of which piece

of the reconstructed function to use is based on the sign of the volume of the corresponding swept area.
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2.2.3. Accuracy of swept region quadrature

Since our reconstruction is exact for a global linear function, the swept region quadrature will also be

exact for such a function because reconstruction is the same in all swept regions. In general, smoothness of

the underlying function, typical assumptions about regularity of the grid, and exactness of the quadrature

for a global linear function imply second-order accuracy [4]. For non-smooth functions we are less con-

cerned about order of accuracy than we are about the quality of the remapped function and its absolute

accuracy. This is addressed in Section 3.

2.3. Conservative mass re-distribution – stage three

The quantity which one is remapping may have specific physical meaning. For example, the given means

might be derived from a concentration lying between zero and one, and for the remapped means to be
physically correct they have to be in the same range – this we call global bounds. There are other re-

quirements related to improving monotonicity of the remapped discrete function. For example, one can

require that the value in the new cell lies between maximum and minimum old values of the corresponding

old cell and its nearest neighbors – this we call local bounds. At this point our algorithm may create values

out of range specified by local or global bounds. This is especially true for non-smooth q. In this section we
describe a procedure based on mass re-distribution that locally adjusts the out of range values to be within

the bounds.

First, choose the bound-determining neighborhood Ci for each cell Ci (we return to the notation from
Section 1 and use just one index). For example, this neighborhood might consist of cell Ci itself and all of its

nearest neighbors – in the case of a logically rectangular grid it will be the 3� 3 patch with center in cell
ðiþ 1

2
; jþ 1

2
Þ. The lower and upper bounds (in which the new means are allowed to be), qmini , qmaxi , are

qmini ¼ min
j2Ci

qj; qmaxi ¼ max
j2Ci

qj:

We will use the notation Ci also for the set of indices of cells in the neighborhood.

In our repair procedure we first check if the new mean value, ~qqi, is within its range, if so we do nothing.

This will always be the case for a global linear function, and this implies that the algorithm continues to be
exact for this function. If the new mean value is out of range we repair it. Below we give the algorithm for

the case when, for some i, ~qqi < qmini . The case when ~qqi > qmaxi is similar.

If

~qqi < qmini ;

then

dmneededi ¼ qmini

�
� ~qqi

�
j ~CCij

is how much mass we need to add to this cell to bring the new value up to its lower bound. Because our

method has to be conservative, this needed mass has to be taken from neighboring cells. Here we start the

search in the bound-determining neighborhood. First, we need to check how much total mass we can take
from all cells in the neighborhood without violating their lower bounds. To do this for each cell in the

neighborhood, that is, for each j 2 Ci, we compute howmuchmass can safely be taken from this cell, which is

dmavailj ¼ max ð~qqjÞ
�

� qminj Þj ~CCjj; 0
�
;

so that the total mass available is

dmavailtotal ¼
X
j2Ci

dmavailj :
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If there is enough available mass in neighboring cells to provide the mass needed for cell ~CCi, that is, if

dmneededi 6 dmavailtotal ;

then the mass and corresponding density in cell ~CCi are brought up to their lower bounds. That is, we

set

~mm0
i ¼ qmini j ~CCij; ~qq

0
i ¼ qmini :

All other masses in the neighborhood are decreased proportionally to the mass available in the corre-

sponding cell, that is,

~mm0
j ¼ ~mmj �

dmavailj

dmavailtotal

dmneededi ;

and clearly the total mass of cell ~CCi and its neighbors remains unchanged. For the densities ~qq
0
j this

implies

~qq
0
j ¼ 1

�
� dmneededi

dmavailtotal

	
~qqj þ

dmneededi

dmavailtotal

qminj ;

This completes repair of cell ~CCi.

If

dmneededi > dmavail;

that is, not enough mass is available in neighboring cells to provide the needed mass, then the neighborhood

is extended and the process is repeated.

We now prove that this process will terminate successfully in a finite number of steps if the following

assumption holds:

~CCi \ Cj 6¼ ; if and only if j 2 Ci; ð3Þ

that is, ~CCi is completely covered by the bound-determining neighborhood of cell Ci.

If the bound-determining neighborhood is specified then this condition can be considered as an as-

sumption on the displacement field. In other words, allowable displacements have to be compatible with the

definition of bound-determining neighborhood.

Let us now assume that there is at least one new cell that violates its lower bound. Define the following

quantities:

DM� ¼
X

i:~qqi<qmini

qmini

�
� ~qqi

�
j ~CCij;

DMþ ¼
X

i:~qqi>qmini

~qqi

�
� qmini

�
j ~CCij:

Then DM� > 0 is the total amount of mass that is needed to bring all new densities that are lower than their
lower bounds up to their lower bounds, qmini , and DMþ is the total amount of mass that can safely be taken

from other cells. For repair to be successful we need to prove that

DMþ P DM�:
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In fact, the total mass M can be expressed as follows:

M ¼
X
i

~qqij ~CCij ¼
X
i

qmini j ~CCij þ
X

i:~qqi>qmini

~qqi

�
� qmini

�
j ~CCij �

X
i:~qqi<qmini

qmini

�
� ~qqi

�
j ~CCij

¼
X
i

qmini j ~CCij þ DMþ � DM�:

Therefore, using assumption (3) and the definition of qmini

DMþ � DM� ¼ M �
X
i

qmini j ~CCij ¼ M �
X
i

X
j2Ci

qmini j ~CCi \ CjjPM �
X
i

X
j2Ci

qjj ~CCi \ Cjj

¼ M �
X
i

X
j

qjj ~CCi \ Cjj ¼ M �
X
j

qj

X
i

j ~CCi \ Cjj ¼ M �
X
j

qjjCjj ¼ M �M ¼ 0:

That is, DMþ P DM� and it is always possible to successfully complete repair by extending the repair

stencil.

It is worth repeating here that the complete algorithm (including repair) is exact for global linear

functions.

3. Tests

Our algorithm can be indicated by the key words ‘‘unlimited, swept, repair’’, so we will call it the USR

algorithm. For comparison purposes we also present results for the following similar algorithms: USN,

meaning unlimited reconstruction, swept region approximate integration, and no repair; and as a reference

we use BE, meaning limited reconstruction of Barth and Jespersen and exact integration.
To test the behavior of our new method we performed a series of remaps on a sequence of grids for

several given functions. The initial grid is uniform in the unit square ½0; 1� � ½0; 1�, while successive grids are
alternately a small random displacement of the uniform grid and a return to the uniform grid. We always

perform an even number of remaps, thereby returning to the original uniform grid. Each successive

problem consists of a remapping from the remapped data on the previous grid to the next grid in the se-

quence. This process allow us to investigate the accumulation of the error, which is defined as the difference

between the original and final means. When refining the grid we increase the number of remappings such

that the total displacement stays approximately the same.

Fig. 2. Initial pyramid: (a) full view and (b) side view.
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Fig. 3. Unlimited, swept, no repair – (USN): (a) full view and (b) side view.

Fig. 4. Unlimited, swept, repair – USR: (a) full view and (b) side view.

Fig. 5. BE exact method: (a) full view and (b) side view.
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First, we remapped a smooth quartic ðx� :5Þ4 þ ðy � :5Þ4 using the new USR algorithm, with grids

50� 50 with 10 remaps, 100� 100 with 20 remaps, 200� 200 with 40 remaps. The corresponding errors in
the maximum norm are 4.10e) 5, 1.19e) 5, 3.56e) 6. In the L1 norm the errors are 5.38e) 6, 1.48e) 6,
3.89e) 7. This numerically shows second-order convergence for this smooth function in both norms for
small random grid displacements.

The next test remaps a cubical pyramid, Fig. 2, on a 50� 50 grid, using the three methods indicated
above. This function varies between 0 and 1. Specifically, let dðx; yÞ ¼ jx� :5j þ jy � :5j. If dðx; yÞ > :38
q ¼ 0, if :2 < dðx; yÞ6 :38 q ¼ :33, if :08 < dðx; yÞ6 :2 q ¼ :66, if dðx; yÞ6 :08 q ¼ 1. Note that without
any limiters or mass re-distribution, i.e., the USN method, some values will go out of range and there will

be oscillations, which can be seen in Fig. 3. The minimal value actually is )1.17e) 2 and the maximum is
1.01 The L1 norm of the error in this case is 1.02e) 2.
Now we can see in Fig. 4 that this problem is fixed by our method (USR), which differs from USN only

by adding repair. The L1 norm of the error in this case is 9.39e) 3. Only about 1.5% of the cells actually

required repair.

For comparison, the result of the exact method (BE) is shown in Fig. 5. The L1 norm of the error in this
case is 1.14e) 2. As expected, the values are within bounds, but also the shape appears to have been
rounded off more than with USR.

We also used our USR algorithm for a discontinuous quadratic pagoda shape, Figs. 6(a) and (b). The L1
norm of the error in this case is 6.00e) 4, while BE for this problem had an error of 7.91e) 4.

4. Conclusion

The conclusion from these runs is that our algorithm has the smallest L1 error and is less dissipative.
Many other tests were performed on these and other problems with more remappings and different

movement of the grids. All confirm that the error with USR is most often smallest or else differs very little

from the smallest; the ability to achieve this without the expense of computing intersections of the old and

new cells is a clear advantage of the new method.

Concerning an extension of our algorithm to 3D, the main technical difficulty is that faces of cells may not

be flat. The simplest example of such a cell is a distorted brick (which is an extension of quadrilateral to 3D, see

[6]). For such a cell the definition of the faces is not unique. However, for our algorithm this is not that im-
portant, as long as a consistent definition of face is given. For example, face can be defined as a union of two

triangles. Now the cells are polyhedra, and all integrals needed in the algorithm can be computed exactly.

Fig. 6. Piecewise quadratic: (a) initial and (b) after 10 maps.
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